МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Министерство образования и науки Челябинской области Комитет по делам образования города Челябинска МБОУ "СОШ № 75 г. Челябинска"

ОСНОВНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ МБОУ "СОШ № 75 г. Челябинска" (с изменениями, утвержденными приказом №87-07/01-02 от 31.08.2023)

РАБОЧАЯ ПРОГРАММА

учебного курса по выбору «ИЗБРАННЫЕ ВОПРОСЫ ОБЩЕЙ ХИМИИ»

для обучающихся 11 классов

РАБОЧАЯ ПРОГРАММА ЭЛЕКТИВНОГО КУРСА

«Избранные вопросы

обшей химии»11 класс

На изучение элективного курса «Избранные вопросы общей химии» отводится 1 учебный час в неделю в 11 классе. (34 часа)

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРОГРАММЫ ЭЛЕКТИВНОГО КУРСА

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

Личностные результаты освоения курса «Углубляем базовый курс химии» отражают сформированность опыта познавательной и практической деятельности обучающихся по реализации принятых в обществе ценностей, в том числе в части:

1) гражданского воспитания:

осознания обучающимися своих конституционных прав и обязанностей, уважения к закону и правопорядку;

представления о социальных нормах и правилах межличностных отношений в коллективе;

готовности к совместной творческой деятельности при создании учебных проектов, решении учебных и познавательных задач, выполнении химических экспериментов;

способности понимать и принимать мотивы, намерения, логику и аргументы других при анализе различных видов учебной деятельности;

2) патриотического воспитания:

ценностного отношения к историческому и научному наследию отечественной химии;

уважения к процессу творчества в области теории и практического применения химии, осознания того, что достижения науки есть результат длительных наблюдений, кропотливых экспериментальных поисков, постоянного труда учёных и практиков;

интереса и познавательных мотивов в получении и последующем анализе информации о передовых достижениях современной отечественной химии;

3) духовно-нравственного воспитания:

нравственного сознания, этического поведения;

способности оценивать ситуации, связанные с химическими явлениями, и принимать осознанные решения, ориентируясь на морально-нравственные нормы и ценности; готовности оценивать своё поведение и поступки своих товарищей с позиций нравственных и правовых норм и осознание последствий этих поступков;

4) формирования культуры здоровья:

понимания ценностей здорового и безопасного образа жизни, необходимости ответственного отношения к собственному физическому и психическому здоровью;

соблюдения правил безопасного обращения с веществами в быту, повседневной жизни и в трудовой деятельности;

понимания ценности правил индивидуального и коллективного безопасного поведения в ситуациях, угрожающих здоровью и жизни людей;

осознания последствий и неприятия вредных привычек (употребления алкоголя, наркотиков, курения);

5) трудового воспитания:

коммуникативной компетентности в учебно-исследовательской деятельности, общественно полезной, творческой и других видах деятельности;

установки на активное участие в решении практических задач социальной направленности (в рамках своего класса, школы);

интереса к практическому изучению профессий различного рода, в том числе на основе применения предметных знаний по химии;

уважения к труду, людям труда и результатам трудовой деятельности;

готовности к осознанному выбору индивидуальной траектории образования, будущей профессии и реализации собственных жизненных планов с учётом личностных интересов, способностей к химии, интересов и потребностей общества;

6) экологического воспитания:

экологически целесообразного отношения к природе, как источнику существования жизни на Земле;

понимания глобального характера экологических проблем, влияния экономических процессов на состояние природной и социальной среды;

осознания необходимости использования достижений химии для решения вопросов рационального природопользования;

активного неприятия действий, приносящих вред окружающей природной среде, умения прогнозировать неблагоприятные экологические последствия предпринимаемых действий и предотвращать их;

наличия развитого экологического мышления, экологической культуры, опыта деятельности экологической направленности, умения руководствоваться ими в познавательной, коммуникативной и социальной практике, способности и умения активно противостоять идеологии хемофобии;

7) ценности научного познания:

сформированности мировоззрения, соответствующего современному уровню развития науки и общественной практики;

понимания специфики химии как науки, осознания её роли в формировании рационального научного мышления, создании целостного представления об окружающем мире как о единстве природы и человека, в познании природных закономерностей и решении проблем сохранения природного равновесия;

убеждённости в особой значимости химии для современной цивилизации: в её гуманистической направленности и важной роли в создании новой базы материальной культуры, решении глобальных проблем устойчивого развития человечества — сырьевой, энергетической, пищевой и экологической безопасности, в развитии медицины, обеспечении условий успешного труда и экологически комфортной жизни каждого члена общества;

естественно-научной грамотности: понимания сущности методов познания, используемых в естественных науках, способности использовать получаемые знания для анализа и объяснения явлений окружающего мира и происходящих в нём изменений, умения делать обоснованные заключения на основе научных фактов и имеющихся данных с целью получения достоверных выводов;

способности самостоятельно использовать химические знания для решения проблем в реальных жизненных ситуациях;

интереса к познанию и исследовательской деятельности;

готовности и способности к непрерывному образованию и самообразованию, к активному получению новых знаний по химии в соответствии с жизненными потребностями;

интереса к особенностям труда в различных сферах профессиональной деятельности.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Метапредметные результаты освоения учебного курса на уровне среднего общего образования включают:

значимые для формирования мировоззрения обучающихся междисциплинарные (межпредметные) общенаучные понятия, отражающие целостность научной картины мира и специфику методов познания, используемых в естественных науках (материя, вещество, энергия, явление, процесс, система, научный факт, принцип, гипотеза, закономерность, закон, теория, исследование, наблюдение, измерение, эксперимент и другие);

универсальные учебные действия (познавательные, коммуникативные, регулятивные), обеспечивающие формирование функциональной грамотности и социальной компетенции обучающихся;

способность обучающихся использовать освоенные междисциплинарные, мировоззренческие знания и универсальные учебные действия в познавательной и социальной практике.

Метапредметные результаты отражают овладение универсальными учебными познавательными, коммуникативными и регулятивными действиями.

Овладение универсальными учебными познавательными действиями:

1) базовые логические действия:

самостоятельно формулировать и актуализировать проблему, всесторонне её рассматривать; определять цели деятельности, задавая параметры и критерии их достижения, соотносить

результаты деятельности с поставленными целями;

использовать при освоении знаний приёмы логического мышления — выделять характерные признаки понятий и устанавливать их взаимосвязь, использовать соответствующие понятия для объяснения отдельных фактов и явлений;

выбирать основания и критерии для классификации веществ и химических реакций;

устанавливать причинно-следственные связи между изучаемыми явлениями;

строить логические рассуждения (индуктивные, дедуктивные, по аналогии), выявлять закономерности и противоречия в рассматриваемых явлениях, формулировать выводы и заключения;

применять в процессе познания, используемые в химии символические (знаковые) модели, преобразовывать модельные представления — химический знак (символ) элемента, химическая формула, уравнение химической реакции — при решении учебных познавательных и практических задач, применять названные модельные представления для выявления характерных признаков изучаемых веществ и химических реакций.

2) базовые исследовательские действия:

владеть основами методов научного познания веществ и химических реакций;

формулировать цели и задачи исследования, использовать поставленные и самостоятельно сформулированные вопросы в качестве инструмента познания и основы для формирования гипотезы по проверке правильности высказываемых суждений;

владеть навыками самостоятельного планирования и проведения ученических экспериментов, совершенствовать умения наблюдать за ходом процесса, самостоятельно прогнозировать его результат, формулировать обобщения и выводы относительно достоверности результатов исследования, составлять обоснованный отчёт о проделанной работе;

приобретать опыт ученической исследовательской и проектной деятельности, проявлять способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания.

3) работа с информацией:

обмена мнениями.

ориентироваться в различных источниках информации (научно-популярная литература химического содержания, справочные пособия, ресурсы Интернета), анализировать информацию различных видов и форм представления, критически оценивать её достоверность и непротиворечивость;

формулировать запросы и применять различные методы при поиске и отборе информации, необходимой для выполнения учебных задач определённого типа;

приобретать опыт использования информационно-коммуникативных технологий и различных поисковых систем;

самостоятельно выбирать оптимальную форму представления информации (схемы, графики, диаграммы, таблицы, рисунки и другие);

использовать научный язык в качестве средства при работе с химической информацией: применять межпредметные (физические и математические) знаки и символы, формулы, аббревиатуры, номенклатуру;

использовать и преобразовывать знаково-символические средства наглядности.

Овладение универсальными коммуникативными действиями:

задавать вопросы по существу обсуждаемой темы в ходе диалога и/или дискуссии, высказывать идеи, формулировать свои предложения относительно выполнения предложенной задачи;

выступать с презентацией результатов познавательной деятельности, полученных самостоятельно или совместно со сверстниками при выполнении химического эксперимента, практической работы по исследованию свойств изучаемых веществ, реализации учебного проекта и формулировать выводы по результатам проведённых исследований путём согласования позиций в ходе обсуждения и

Овладение универсальными регулятивными действиями:

самостоятельно планировать и осуществлять свою познавательную деятельность, определяя её цели и задачи, контролировать и по мере необходимости корректировать предлагаемый алгоритм действий при выполнении учебных и исследовательских задач, выбирать наиболее эффективный способ их решения с учётом получения новых знаний о веществах и химических реакциях; осуществлять самоконтроль своей деятельности на основе самоанализа и самооценки.

1.1 Предметные планируемые результаты

В соответствии с требованиями ФГОС среднего общего образования предметные результаты изучения учебного предмета «Химия» изучения химии на базовом уровне на ступени среднего (полного) общего образования являются:

- 1) в познавательной сфере:
- знание (понимание) изученных понятий, законовитеорий;
 - *умение* описывать демонстрационные и самостоятельно проведенные эксперименты, используя для этого естественный (русский, родной) язык и язык химии;
 - *умение* классифицировать химические элементы, простые и сложные вещества, в том числе иорганические соединения, химические реакции по разным основаниям;
 - *умение* характеризовать изученные классы неорганических и органических соединений, химическиереакции;
 - *готовность* проводить химический эксперимент, наблюдать за его протеканием, фиксировать результаты самостоятельногоидемонстрируемого экспериментаиделать выводы;
 - *умение* формулировать химические закономерности, прогнозировать свойства неизученных веществ поаналогии сосвойствами изученных;
 - *поиск* источников химической информации, получение необходимой информации, ее анализ, изготовление химического информационного продукта и его презентация;
 - владение обязательными справочными материалами: Периодической системой химических элементов Д. И. Менделеева, таблицей растворимости, электрохимическим рядом напряжений металлов, рядом электроотрицательности для характеристики строения, состава и свойств атомов элементовхимических элементов I–IV периодов и образованных ими простых и сложных веществ;
 - -- установление зависимости свойств и применения важнейших органических соединений от их химического строения, в том числе и обуслов ером этого строения (пре дельнымили непредельным) и наличием функциональны
 - моделирование молекул важнейших неорганических и органических веществ;
 - *понимание* химической картины мира как неотъемлемой части целостной научной картины мира;
 - 2) в ценностно-ориентационной сфере анализ и оценка последствий для окружающей среды бытовой и производствен- ной деятельности человека, связанной с производством и переработкой важнейших химических продуктов;
 - 3) в трудовой сфере *проведение х*имического эксперимента; *развитие* навыков учебной, проектно-исследовательской, творческой деятельности при выполнении индивидуально- го проекта по химии;
 - 4) в сфере здорового образа жизни *соблюдение* правил безопасного обращения с веществами, материалами и химическими процессами; оказание первой помощи при отравлениях, ожогах идругих травмах, связанных с веществами илабораторным оборудованием.

Выпускник на базовом уровне научится:

- понимать химическую картину мира как составную часть целостной научной картины мира;
- раскрывать роль химии и химического производства как производительной силы современного общества;
- формулировать значение химии и ее достижений для повседневной жизни человека;
- устанавливать взаимосвязь между химией и другими естественными науками;
 - формулировать основные положения теории химического строения органических соединений А. М. Бутлерова и иллюстрировать их примерами из органической и неорганической химии;
 - аргументировать универсальный характер химических понятий, законов и

теорийдля органической и неорганической химии;

- формулировать Периодический закон Д. И. Менделеева и закономерности изменений в строении и свойствах химических элементов и образованных ими веществ на основе Периодической системы как графического отображения Периодического закона:
- характеризовать s- и p-элементы, а также железо по их положению в Периодической системе Д. И. Менделеева;
- классифицировать виды химической связи и типы кристаллических решеток, объяснять механизмы их образования и доказывать единую природу химических связей (ковалентной, ионной, металлической, водородной);
- объяснять причины многообразия веществ, используя явления изомерии, гомологии, аллотропии;
- классифицировать химические реакции в неорганической и органической химии по различным основаниям и устанавливать специфику типов реакций от общего через особенное к единичному;
- характеризовать гидролиз как специфичный обменный процесс и раскрывать его роль в живой и неживой природе;
- характеризовать электролиз как специфичный окислительно восстановительный процесс иего практическое значение;
- характеризовать коррозию металлов как окислительно-восстановительный процесси предлагать способы защиты от нее;
- классифицировать неорганические и органические вещества;
 - характеризовать общие химические свойства важнейших классов неорганических и органических соединений в плане от общего через особенное к единичному;
 - использовать знаковую систему химического языка для отображения состава (химические формулы) и свойств (химические уравнения) веществ;
 - использовать правила и нормы международной номенклатуры для названий веществ по формулам и, наоборот, для составления молекулярных и структурных формул соединений по их названиям;
 - знать тривиальные названия важнейших в бытовом отношении неорганическихи органических веществ;
 - характеризовать свойства, получение и применение важнейших представителей классов органических соединений (алканов, алкенов, алкинов, алкадиенов, ароматических углеводородов, спиртов, фенолов, альдегидов, предельных одноосновных карбоновых кислот, сложных эфиров и жиров, углеводов, аминов, аминокислот);
 - устанавливать зависимость экономики страны от добычи, транспортировки и переработки углеводородного сырья (нефти и природного газа);
 - экспериментально подтверждать состав и свойства важнейших представителей изученных классов неорганических и органических веществ с соблюдением правил техники безопасности для работы с химическими веществами и лабораторным оборудованием;
 - характеризовать скорость химической реакции и ее зависимость от различных факторов;
 - характеризовать химическое равновесие и его смещение в зависимости от различных факторов;
 - производить расчеты по химическим формулам и уравнениям на основе количественных отношений между участниками химических реакций;
 - соблюдать правила экологической безопасности во взаимоотношениях с окружающей средой при обращении с химическими веществами, материалами и процессами.

Выпускник научится:

- использовать методы научного познания при выполнении проектов и учебно-исследовательских задач химической тематики;
- прогнозировать строение и свойства незнакомых неорганических и органических веществ на основе аналогии;
- прогнозировать течение химических процессов в зависимости от условий их протекания и предлагать способы управления этимипроцессами;
- устанавливать взаимосвязи химии с предметами гуманитарного цикла (языком, литературой, мировой художественной культурой);
- раскрывать роль химических знаний в будущей практической деятельности;
 - раскрывать роль химических знаний в формировании индивидуальной образовательной траектории;
 - прогнозировать способность неорганических и органических веществ проявлять окислительные и/или восстановительные свойства с учетом степеней окисления элементов, образующих их;
 - аргументировать единство мира веществ установлением генетической связи между неорганическими и органическими веществами;
- владеть химическим языком для обогащения словарного запаса и развития речи;
 - характеризовать становление научной теории на примере открытия Периодического закона и теории химического строения органических веществ;
 - критически относиться к псевдонаучной химической информации, получаемой из разных источников;
 - понимать глобальные проблемы, стоящие перед человечеством (экологические, энергетические, сырьевые), и предлагать пути их решения, в том числе и с помощью химии.

Предметные результаты освоения учебного предмета «Химия», отражающие

HРЭО - формирование представлений о науке, её роли в жизни и профессиональной деятельности человека, необходимость применения знаний для решения современных практических задач родного края, в том числе с учетом рынка труда Челябинской области.

Данный результат формируется в результате решения задач с практическим содержанием, решение задач на сопоставление исторических фактов, числовых характеристик наиболее значимых объектов области, достижений в области экономики и науки.

- овладение основными навыками получения, применения, интерпретации и презентации информации предметного содержания, использования знаний в повседневной жизни и изучения других предметов, формирование представлений о реальном секторе экономики и рынке труда Челябинской области.

Для достижения этого результата можно использовать статистический материал, характеризующий город, область и страну в целом, а также выбирать темы проектной и исследовательской деятельности; отражающие специфику экономики и рынка труда региона и страны.

- формирование представлений об особенностях деятельности людей, ведущей к развитию промышленности родного края, освоение системы предметных знаний для последующего изучения дисциплин необходимых для получения инженерных и технических специальностей в учреждениях системы среднего и высшего профессионального образования.

СОДЕРЖАНИЕ УЧЕБНОГО КУРСА

Органическая химия

Наблюдение, предположение, гипотеза. Поиск закономерностей. Научный эксперимент. Вывод.

Теория строения органических соединений

Предмет органической химии. Место и значение органической химии в системе естественных наук. Валентность. Химическое строение. Основные положения теории строения органических соединений. Углеродный скелет органической молекулы. Кратность химической связи. Изомерия и изомеры.

Углеводороды и их природные источники

Алканы. Природный газ, его состав и применение как источника энергии и химического сырья. Гомологический ряд предельных углеводородов. Изомерия и номенклатура алканов. Метан и этан как представители алканов. Свойства (горение, реакции замещения, пиролиз, дегидрирование). Применение. Крекинг и изомеризация алканов. Алкильные радикалы. Механизм свободнорадикального галогенирования алканов.

Этилен представитель алкенов. Получение Алкены. этилена промышленности (дегидрирование этана) и в лаборатории (дегидратация этанола). Свойства (горение, бромирование, гидратация, полимеризация, окисление раствором КМпО4) и применение этилена. Полиэтилен. Пропилен. Стереорегулярность полимера. Основные понятия химии высокомолекулярных соединений. Реакшии полимеризации.

Диены. Бутадиен и изопрен как представители диенов. Реакции присоединения с участием сопряженных диенов (бромирование, полимеризация, гидрогалогенирование, гидрирование). Натуральный и синтетический каучуки. Резина.

Алкины. Ацетилен как представитель алкинов. Получение ацетилена карбидным и метановым способами. *Получение карбида кальция*. Свойства (горение, бромирование, гидратация, тримеризация) и применение ацетилена.

Арены. Бензол как представитель аренов. *Современные представления о строении бензола*. Свойства бензола (горение, нитрование, бромирование) и его применение.

Нефть и способы переработки. Состав нефти. Переработка нефти: перегонка и крекинг. *Риформинг низкосортных нефтепродуктов*. Понятие об октановом числе.

Кислородсодержащие органические соединения

Спирты. Метанол и этанол как представители предельных одноатомных спиртов. Свойства этанола (горение, окисление в альдегид, дегидратация). Получение (брожением глюкозы и гидратацией этилена) и применение этанола. Этиленгликоль. Глицерин как еще один представитель многоатомных спиртов. Качественная реакция на многоатомные спирты.

Фенол. Получение фенола из каменного угля. Каменный уголь и его использование. Коксование каменного угля, важнейшие продукты коксохимического производства.

Взаимное влияние атомов в молекуле фенола (взаимодействие с бромной водой и гидроксидом натрия). Получение и применение фенола.

Альдегиды. Формальдегид и ацетальдегид как представители альдегидов. *Понятие о кетонах*. Свойства (реакция окисления в кислоту и восстановления в спирт, реакция поликонденсации формальдегида с фенолом). Получение (окислением спиртов) и применение формальдегида и ацетальдегида.

Фенолоформальдегидные пластмассы. Термопластичность и термореактивность.

Карбоновые кислоты. Уксусная кислота как представитель предельных одноосновных карбоновых кислот. Свойства уксусной кислоты (взаимодействие с металлами, оксидами металлов, гидроксидами металлов и солями; реакция этерификации). Применение уксусной кислоты.

Сложные эфиры и жиры. Сложные эфиры как продукты взаимодействия кислот со спиртами. Значение сложных эфиров в природе и жизни человека. Отдельные представители кислот иного строения: олеиновая, линолевая, линоленовая, акриловая, щавелевая, бензойная.

Жиры как сложные эфиры глицерина и жирных карбоновых кислот. Растительные и животные жиры, их состав. Гидролиз или омыление жиров. Мыла. Синтетические моющие средства (СМС). Применение жиров. Замена жиров в технике непищевым сырьем.

Углеводы. Понятие об углеводах. Глюкоза как представитель моносахаридов. Понятие о двойственной функции органического соединения на примере свойств глюкозы как альдегида и многоатомного спирта — альдегидоспирта. Брожение глюкозы. Значение и применение глюкозы. Фруктоза как изомер глюкозы.

Сахароза как представитель дисахаридов. Производство сахара.

Крахмал и целлюлоза как представители полисахаридов. Сравнение их свойств и биологическая роль. Применение этих полисахаридов.

Азотсодержащие органические соединения

А мины. Метиламин как представитель алифатических аминов и анилин — как ароматических. Основность аминов в сравнении с основными свойствами аммиака. Анилин и его свойства (взаимодействие с соляной кислотой и бромной водой). Взаимное влияние атомов в молекулах органических соединений на примере анилина. Получение анилина по реакции Н. Н. Зинина. Применение анилина.

Аминокислоты. Глицин и аланин как представители природных аминокислот. Свойства аминокислот как амфотерных органических соединений (взаимодействие с щелочами и кислотами). Особенности диссоциации аминокислот в водных растворах. Биполярные ионы. Образование полипептидов. Аминокапроновая кислота как представитель синтетических аминокислот. Понятие о синтетических волокнах на примере капрона. Аминокислоты в природе, их биологическая роль. Незаменимые аминокислоты.

Белки. Белки как полипептиды. Структура белковых молекул. Свойства белков (горение, гидролиз, цветные реакции). Биологическая роль белков.

Нуклеиновые кислоты. Нуклеиновые кислоты как полинуклеотиды. Строение нуклеотида. РНК и ДНК в сравнении. Их роль в хранении и передаче наследственной информации. *Понятие о генной инженерии и биотехнологии*.

Генетическа ясвязь между классами орга нических соединен ий. Понятие о генетической связи и генетических рядах.

Химия и жизнь

П ластмасы и в олокн а. Полимеризация и поликонденсация как способы получения синтетических высокомолекулярных соединений. Получение искусственных высокомолекулярных соединений химической модификацией природных полимеров. Строение полимеров: линейное, пространственное, сетчатое.

Понятие о пластмассах. Термопластичные и термореактивные полимеры. Отдельные представители синтетических и искусственных полимеров: фенолоформальдегидные смолы, поливинилхлорид, тефлон, целлулоид.

Понятие о химических волокнах. Натуральные, синтетические и искусственные волокна. Классификация и отдельные представители химических волокон: ацетатное

(триацетатный шелк) и вискозное, винилхлоридное (хлорин), полинитрильное (нитрон), полиамидное (капрон, найлон), полиэфирное (лавсан).

Ферменты как биологические катализаторы белковой природы. Понятие о рН среды. Особенности строения и свойств (селективность и эффективность, зависимость действия от температуры и рН среды раствора) ферментов по сравнению с неорганическими катализаторами. Роль ферментов в жизнедеятельности живых организмов и производстве.

В и т а м и н ы. Понятие о витаминах. Виды витаминной недостаточности. Классификация витаминов. Витамин С как представитель водорастворимых витаминов и витамин А как представитель жирорастворимых витаминов.

Го р м о н ы. Понятие о гормонах как биологически активных веществах, выполняющих эндокринную регуляцию жизнедеятельности организмов. Важнейшие свойства гормонов: высокая физиологическая активность, дистанционное действие, быстрое разрушение в тканях. Отдельные представители гормонов: инсулин и адреналин. Профилактика сахарного диабета. Понятие о стероидных гормонах на примере половых гормонов.

Л е к а р с т в а. Лекарственная химия: от ятрохимии и фармакотерапии до химиотерапии. Антибиотики и дисбактериоз. Наркотические вещества. Наркомания, борьба с ней и профилактика.

Решение з а да ч по органиче ск ой хими и. Решение задач на вывод формулы органических веществ по продуктам сгорания и массовым долям элементов.

Перечень практических работ, лабораторных опытов и демонстраций

Демонстрации. Плавление, обугливание и горение органических веществ. Модели молекул представителей различных классов органических соединений. Горение метана, этилена, ацетилена. Отношение метана, этилена, ацетилена и бензола к растворам перманганата калия и бромной воде. Получение этилена реакцией дегидратации этанола, ацетилена — гидролизом карбида кальция. Разложение каучука при нагревании, испытание продуктов разложения на непредельность. Коллекция образцов нефти и нефтепродуктов, каменного угля и продуктов коксохимического производства. Окисление спирта в Качественные реакции на многоатомные спирты. Растворимость фенола в воде при обычной температуре и при нагревании. Качественные реакции на фенол. Реакция «серебряного зеркала» альдегидов и глюкозы. Окисление альдегидов и глюкозы в кислоту с помощью гидроксида меди (II). Качественная реакция на крахмал. Коллекция эфирных масел. Коллекция пластмасс и изделий из них. Коллекция искусственных волокон и изделий из них. Взаимодействие аммиака и анилина с соляной кислотой. Реакция анилина с бромной водой. Доказательство наличия функциональных групп в растворах аминокислот. Растворение и осаждение белков. Цветные реакции белков. Горение птичьего пера и шерстяной нити. Модель молекулы ДНК. Переходы: этанол — этилен — этиленгликоль — этиленгликолят меди (II); этанол — этаналь — этановая кислота. Коллекция пластмасс, синтетических волокон и изделий из них. Разложение пероксида водорода каталазой сырого мяса и сырого картофеля. Коллекция СМС, содержащих энзимы. Испытание среды раствора СМС индикаторной бумагой. Коллекция витаминных препаратов. Испытание среды раствора аскорбиновой кислоты индикаторной бумагой. Испытание аптечного препарата инсулина на белок.

Лабораторные опыты. Изготовление моделей молекул органических соединений. Ознакомление с коллекцией образцов нефти, каменного угля и продуктов их переработки. Обнаружение в керосине непредельных соединений. Ознакомление с коллекцией каучуков и образцами изделий из резины. Растворение

глицерина в воде и взаимодействие с гидроксидом меди (II). Свойства уксусной кислоты, общие со свойствами минеральных кислот. Доказательство непредельного характера жидкого жира. Взаимодействие глюкозы и сахарозы с гидроксидом меди (II). Качественная реакция на крахмал. Ознакомление с коллекцией пластмасс и изделий из них. Ознакомление с коллекцией искусственных волокон и изделий из них. Растворение белков в воде. Обнаружение белков в молоке. Ознакомление с коллекцией синтетических волокон и изделий из них. Ознакомление с коллекцией СМС, содержащих энзимы. Испытание среды раствора СМС индикаторной бумагой. Ознакомление с коллекцией витаминов. Испытание среды раствора аскорбиновой кислоты индикаторной бумагой.

Практическая работа № 1. Решение экспериментальных задач на идентификацию органических соединений.

Практическая работа № 2. Распознавание пластмасс и волокон.

Обшая химия

Периодический закон и строение атома

Открытие Д. И. Менделеевым Периодическ ого з акона. *Первые попытки классификации химических элементов*. Важнейшие понятия химии: атом, относительная атомная и молекулярная массы. Открытие Д. И. Менделеевым Периодического закона. Периодический закон в формулировке Д. И. Менделеева.

Периодическая система Д. И. Менделеева. Периодическая система Д. И. Менделеева как графическое отображение Периодического закона. Различные варианты Периодической системы. Периоды и группы. Значение Периодического закона и Периодической системы.

Стро ение атом а. Атом — сложная частица. Открытие элементарных частици и строения атома. Ядро атома: протоны и нейтроны. Изотопы. Изотопы водорода. Электроны. Электронная оболочка. Энергетический уровень. Орбитали: s- и p-. d-Орбитали. Распределение электронов по энергетическим уровням и орбиталям. Электронные конфигурации атомов химических элементов. Валентные возможности атомов химических элементов.

Пе р и о диче ский з ак он и стр о ение атом а. Современное понятие химического элемента. Современная формулировка Периодического закона. Причина периодичности в и з м е н е н и и свойств химических элементов. Особенности заполнения энергетических уровней в электронных оболочках атомов переходных элементов. Электронные семейства элементов: s- и p-элементы; d- u f-элементы.

Строение вещества

К ов а л е н т н а я х и м и че ска я связ в. Понятие о ковалентной связи. Общая электронная пара. Кратность ковалентной связи. Электроотрицательность. Перекрывание элек- тронных орбиталей, пи- и сигма-связи. Ковалентная полярная и ковалентная неполярная химические связи. Обменный и донорно-акцепторный механизмы образования ковалентной связи. Вещества молекулярного и немолекулярного строения. Закон постоянства состава для веществ молекулярного строения.

И о н н а я х и м и ч е с к а я с в я з ь. Катионы и анионы. Ионная связь и ее свойства. Ионная связь как крайний случай ковалентной полярной связи. Формульная единица вещества. Относительность деления химических связей на типы.

Металлическая химическая связь. Общие физические свойства металлов. Зависимость электропроводности металлов от температуры. Сплавы. Черные и иветные сплавы.

Агр егатные с о стояния в еще ств а. Газы. Закон Авогадро для газов. Молярный

объем газообразных веществ (при н. у.). Жидкости.

Во дор о дна я х и м и ч е ска я связ ь. Водородная связь как особый случай межмолекулярного взаимодействия. Механизм ее образования и влияние на свойства веществ (на примере воды). *Использование воды в быту и на производстве*. Внутримолекулярная водородная связь и ее биологическая роль.

Т ипы кри ст а лли че ских р еш е то к. Кристаллическая решетка. Ионные, металлические, атомные и молекулярные кристаллические решетки. Аллотропия. Аморфные вещества, *их отличительные свойства*.

Ч и с т ы е в е щ е с т в а и с м е с и. Смеси и химические соединения. Гомогенные и гетерогенные смеси. Массовая и объемная доли компонентов в смеси. Массовая доля примесей. Решение задач на массовую долю примесей. Классификация веществ по степени их чистоты.

Д и с п е р с н ы е с и с т е м ы. Понятие дисперсной системы. Дисперсная фаза и дисперсионная среда. Классификация дисперсных систем. Коллоидные дисперсные системы. Золи и гели. Значение дисперсных систем в природе и жизни человека.

Электролитическая диссоциация

Растворы как гомогенные системы, состоящие из частиц растворителя, растворенного вещества и продуктов их взаимодействия. *Растворение как физико-химический процесс*. Массовая доля растворенного вещества. Типы растворов. *Молярная концентрация вещества*. *Минеральные воды*.

Т е ория э л е кт р о л и т и че ск ой дис с о ц и а ц и и. Электролиты и неэлектролиты. Степень электролитической диссоциации. Сильные и слабые электролиты. Уравнения электролитической диссоциации. Механизм диссоциации. Ступенчатая диссоциация. Водородный показатель.

К и с л о т ы в свете теории электролитической диссоциации. Общие свойства неорганических и органических кислот. Условия течения реакций между электролитами до конца. Специфические свойства азотной, концентрированной серной и муравьиной кислот.

О с н о в а н и я в свете теории электролитической диссоциации, их классификация и общие свойства. Амины как органические основания. Сравнение свойств аммиака, метиламина ианилина.

С о л и в свете теории электролитической диссоциации, их классификация и общие свойства. *Соли кислые и основные. Соли органических кислот. Мыла*. Электрохимический ряд напряжений металлов и его использование для характеристики восстановительных свойств металлов.

Ги д р о л и з. Случаи гидролиза солей. Реакция среды (pH) в растворах гидролизующихся солей. *Гидролиз органических ве- ществ, его значение*.

Химические реакции

Классификация химических реакци й. Реакции, идущие без изменения состава веществ. Классификация по числу и составу реагирующих веществ и продуктов реакции. Реакции разложения, соединения, замещения и обмена в неорганической химии. Реакции присоединения, отщепления, замещения и изомеризации в органической химии. Реакции полимеризации как частный случай реакций присоединения.

Т еплов ой э ф ф ект химиче ских р еакци й. Экзо- и эндотермические реакции. Термохимические уравнения. Расчет количества теплоты по термохимическим уравнениям.

Ск ор о сть х и м и ч е ских р е а кци й. Понятие о скорости химических реакций, аналитическое выражение. Зависимость скорости реакции от концентрации, давления, температуры, природы реагирующих веществ, площади их соприкосновения. Закон действующих масс. Решение задач на химическую кинетику.

К а т а л и з. Катализаторы. Катализ. Гомогенный и гетерогенный катализ.

Примеры каталитических процессов в промышленности, технике, быту. Ферменты и их отличия от неорганических катализаторов. Применение катализаторов и ферментов.

X и м и ч е с к о е р а в н о в е с и е. Обратимые и необратимые реакции. Химическое равновесие и способы его смещения на примере получения аммиака. Синтез аммиака в промышленности. Понятие об оптимальных условиях проведения технологического процесса.

Окис лительновосстановите льные процессы. Окислительновосстановительные реакции. Окислитель и восстановитель. Окисление и восстановление. Составление уравнений окислительно-восстановительных реакций методом электронного баланса.

О бщие свойства металло в. Химические свойства металлов как восстановителей. Взаимодействие металлов с неметаллами, водой, кислотами и растворами солей. Металлотермия.

К орр о зия мет а ллов *как окислительно-восстановительный процесс*. Способы защиты металлов от коррозии.

О бщие свойств а немет а лло в. Химические свойства неметаллов как окислителей. Взаимодействие с металлами, водородом и другими неметаллами. Свойства неметаллов как восстановителей. Взаимодействие с простыми и сложными веществами-окислителями. Общая характеристика галогенов.

Электролиз. Общие способы получения металлов и неметаллов. Электролиз растворов и расплавов электролитов на примере хлорида натрия. Электролитическое получение алюминия. Практическое значение электролиза. Гальванопластика и гальваностегия.

З а к л ю ч е н и е. Перспективы развития химической науки и химического производства. Химия и проблема охраны окружающей среды.

Перечень практических работ, лабораторных опытов и демонстраций Демонстрации. Различные формы Периодической системы Д. И. Менделеева. Модель кристаллической решетки хлорида натрия. Образцы минералов с ионной кристаллической решеткой: кальцита, галита. Модели кристаллических решеток «сухого льда» (или иода), алмаза, графита (или кварца). Модель молярного объема газов. Три агрегатных состояния воды. Образцы различных дисперсных систем: эмульсий, суспензий, аэрозолей, гелей и золей. Коагуляция. Синерезис. Эффект Тиндаля. Испытание растворов электролитов и неэлектролитов на предмет диссоциации. Зависимость степени электролитической диссоциации уксусной кислоты от разбавления раствора. Примеры реакций ионного обмена, идущих с образованием осадка, газа или воды. Химические свойства кислот: взаимодействие с металлами, основными и амфотерными оксидами, основаниями (щелочами и нерастворимыми в воде), солями. Взаимодействие азотной кислоты с медью. Обугливание концентрированной серной кислотой сахарозы. Химические свойства щелочей: реакция нейтрализации, взаимодействие с кислотными оксидами, солями. Разложение нерастворимых в воде оснований при нагревании. Химические свойства солей: взаимодействие с металлами, кислотами, щелочами, с другими солями. Гидролиз карбида кальция. Изучение рН растворов гидролизующихся солей: карбонатов щелочных металлов, хлорида и ацетата аммония. Экзотермические и эндотермические химические реакции. Тепловые явления при растворении серной кислоты и аммиачной селитры. Зависимость скорости реакции от природы веществ на примере взаимодействия растворов различных кислот одинаковой концентрации с одинаковыми кусочками (гранулами) цинка и одинаковых кусочков разных металлов (магния, цинка, железа) с раствором соляной кислоты. Взаимодействие кислоты с растворами тиосульфата натрия растворов серной

концентрации и температуры. Модель кипящего слоя. Разложение пероксида водорода с помощью неорганических катализаторов (FeCl₂, KI) и природных объектов, содержащих каталазу (сырое мясо, картофель). Простейшие окислительно-восстановительные реакции: взаимодействие цинка с соляной кислотой и железа с сульфатом меди (II). Модель электролизера. Модель электролизной ванны для получения алюминия.

Лабораторные опыты. Определение типа кристаллической решетки вещества и описание его свойств. Ознакомление с дисперсными системами.

Реакции, идущие с образованием осадка, газа или воды. Взаимодействие соляной кислоты с цинком, оксидом меди (II), гидроксидом меди (II), карбонатом кальция. Взаимодействие раствора гидроксида натрия с соляной кислотой в присутствии фенолфталеина, с раствором хлорида железа (III), с раствором соли алюминия. Взаимодействие раствора сульфата меди (II) с железом, известковой водой, раствором хлорида кальция. Получение гидрокарбоната кальция взаимодействием известковой воды с оксидом углерода (IV) (выдыхаемый воздух). Испытание индикатором растворов гидролизующихся и негидролизующихся солей. Реакция замещения меди железом в растворе сульфата меди (II). Получение кислорода разложением пероксида водорода с помощью диоксида марганца. Получение водорода взаимодействием кислоты с цинком. Ознакомление с препаратами бы-овой химии, содержащими энзимы.

Практическая работа № 1. Получение и распознавание газов.

Практическая работа № 2. Решение экспериментальных задач на идентификацию неорганических и органических соединений.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ,

в том числе с учетом рабочей программы воспитания с указанием количества часов, отводимых на освоение каждой темы 11 класс

№ п/п	Тема раздела	Кол-вочасов	-	Основные	ЭОР
			я работа	направления воспитательной деятельности.	
	Раздел 1. Основные сведения	4		- содействия профессиональному самоопределению, приобщения к социально значимой деятельности для профессии.	
	Раздел 2. Строение вещества	11		Содействие повышению творчества. Привлекательности науки для подрастающего поколения.	https://resh.edu.ru/subjec t/29/11/
	Раздел 3. Электролитич еская диссоциация	7	2	поддержка научно- технического творчества детей;	https://resh.edu.ru/subjec t/29/11/ https://fipi.ru/oge/otkryty y-bank-zadaniy- oge#!/tab/173942232-4
	Разднл 4. Химические реакции	10	2	Содействие профессиональному самоопределению, приобщения к социально значимой деятельности для осмысленного профессии.	https://resh.edu.ru/subjec t/29/11/ https://fipi.ru/oge/otkryty y-bank-zadaniy- oge#!/tab/173942232-4
	Раздел 5. Решение заданийКИМ	2			https://fipi.ru/oge/otkryty y-bank-zadaniy- oge#!/tab/173942232-4
	ИТОГО	34	4		